咨询电话
0512-111111225
联系我们
0512-
QQ:
111111225
地址:
湖南省邵阳市
产品知识
结构动力学的方程解法

发布时间:2019-01-05

  运动方程 (2)可用振型叠加法或逐步积分法求解。 先求出结构作自由振动时的固有频率和振型,然后利用求得的振型作为广义位移函数再对运动方程作一次坐标变换,进而求出方程的解。一个n个自由度的结构具有n个固有频率ωj 和n个振型═j(j=1,2,…,n)。═j规定了n 个广义坐标qi(i=1,2,…,n)在第j个振型中的相对大小。振型满足下列关系式: (3)式中上标“T”为矩阵转置符号;Μj为第j 个振型的广义质量。i厵j 时的关系式称为振型的正交条件。正交条件在物理上意味着不同的振型之间不存在能量交换,即结构在作自由振动时各个振型都是独立进行的。振型叠加法可以有条件地用于有阻尼的情况。若结构的阻尼矩阵可表为: D=αK+βΜ,(4)式中ξj称为第j 个振型的阻尼系数。同时,有阻尼的自振频率将改变为。条件(4)还可放宽为DΜ-1K=KΜ-1D,式中Μ-1为Μ的逆矩阵。 通过振型及相应的广义坐标Yj(t),可将方程(2)中的广义坐标矢量q(t)表示为: (6)

  代入方程(2),并左乘以═寝,利用正交条件(3)和(5),可将方程(2)转化为: (7)

  式中Pj(t)=═j·Q(t)是对应于第j个振型的广义力。方程(7)可以通过时域分析法或频域分析法求解。 时域分析法是利用卷积积分给出方程(7)的解,可用于任意变化的载荷情况。频域分析法是利用傅里叶分析把周期性载荷展开为一系列简谐分量之和,然后计算结构对每一简谐分量的响应,最后叠加各简谐响应项而获得结构的总响应。这种方法适用于周期性载荷情况。对于非周期性载荷,也可以利用傅里叶变换技术。1965年出现了快速傅里叶变换──一种用计算机计算离散傅里叶变换的方法,它在效率和功能方面的优点,使得频域分析方法能和传统的时域分析方法相媲美,并正在引起结构动力学领域的变革。

  由于运动方程(7)可以逐个独立地求解,使得振型叠加法具有很大的优越性,因而它已成为结构动力学中一个应用最广泛的分析方法。对于大多数类型的动载荷,各个振型的响应是不同的,一般是频率最低的振型响应最大,高频振型的响应则趋向减小,因而在叠加过程中只需要计及频率较低的若干项,若得到的响应已达到精度要求,就可舍弃频率较高的各项,从而可以大大减少计算工作量。振型叠加法只适用于线性振动问题。 吸收其他学科的新技术,改善现有的方法和技术以提高它们的效率和精度,并开展跨学科的研究工作。